Lars Richter, project manager at project: syntropy, picked up the story: “We were tasked with renewing the projection system in the dome, which came about as the existing visual display system didn’t fill the entire field of view. It also had low resolution and brightness and had to be calibrated manually. A lot of the problems came from the fact that the existing projection system was UHP lamp-based, which means that the existing projectors had to be realigned regularly following lamp replacement. Realignment was done manually and this high maintenance workflow resulted to down time, which was not compatible with the end user’s needs.”
The domeprojection.com software was key during the installation, with a great deal of calculations having to be made before anything could be put in place. Steinmann explained: “We positioned a camera at the center of the dome, which allowed to recognize all of the projection areas. We then tested to verify the geometry accuracy and ensure that the systems could work together.
“The first test was done using a laser pointer on top of the target system manipulator. The manipulator moved on a precise pathway and this ‘path’ was projected with the visual system. The resultant divergence was now as small as 1.7 arc minutes”
He continued: “In the second test, we projected a marker by using a theodolite to measure the points as precisely as possible. The divergence was <10mm on the dome surface.
Color calibration was then achieved using the ProjectionTools ColorCalibration add-on with a Jeti spectrometer.”
The proprietary software used by e.sigma during the simulations was also revamped during the upgrade. By closely collaborating with domeprojection.com, e.sigma developed an interface to import the warping & blending directly into the software itself.
Once installed, the system would have to be able to perform a variety of tasks, as Roland Bals of e.sigma explained: “The dome is used to test weapons systems that can defend against land, air and sea threats. Another range of tasks is the investigation of guided missiles, especially their seeker heads. Modern seeker heads and weapon systems typically have detectors in the wavelength range from ultraviolet to infrared. The projection surface of the ZSD has a specially developed reflective surface, which makes it possible to reflect both static and mobile signatures of targets with approximately 100% throughout the spectral range.
“The devices (test specimens) to be examined can detect and track the targets due to the reflected radiation. The target scenarios are reproduced in their presentation and dynamics in such a precise way that the behavior of the fire control loops of the test ring can be recorded by measuring.”
He added: “Another important task is to investigate the disreputability of available weapon systems and missiles. The currently known interference measures from electronic warfare are to be tested on the available systems in order to be able to make statements about their effectiveness. The overall representation of a scenario takes into account the influence of terrain and clouds, as well as daytime and weather. The shape and orientation of the targets on the projection surface is realistically mapped to enable target tracking by the sensors of the test specimens.”